

LIFE CYCLE ASSESMENT OF A FRENCH WIND PLANT

Blanca PALOMO¹ / Bastien GAILLARDON² / Claire MICHAUD¹ ¹RESCOLL / ² VALEOL www.rescoll.fr / www.valeol.fr

Introduction

VALEOL-VALOREM has contracted RESCOLL to carry out a Life Cycle Assessment (LCA) of a French onshore wind plant comprised of five 3.0 MW wind turbines.

This study is a valuable tool in the approach of VALEOL-VALOREM to managing their environmental impact and their continuous improvement

LCA prepared in accordance with ISO 14040 and ISO 14044 et based on:

data related to a French test wind plant.

➡ all stages of life cycle (study stage, production of all parts of the wind) plant, transportation, construction stage, wind plant operations including maintenance, disassembly and end of life treatment of turbines)

Sensitivity analysis

Table1: Comparison of environmental impacts and quantitative indicators in relation to the lifetime of the plant

Impact category	Unit	Lifetime		Change
		20 years	40 years	(%)
Cumulative energy demand	MJ	1.849E-01	1.458E-01	21
Abiotic depletion	kg Sb eq	8.502E-05	6.684E-05	21
Acidification	kg SO ₂ eq	5.354E-05	4.489E-05	16
Eutrophication	kg PO ₄ eq	4.014E-05	3.657E-05	9
Global warming potential	kg CO ₂ eq	1.177E-02	8.874E-03	25
Photochemical oxidation	kg C_2H_2 eq	3.985E-06	3.213E-06	19
Agricultural land occupation	m²a	1.935E-04	1.496E-04	23
Urban land occupation	m²a	1.447E-04	1.185E-04	18
Natural land transformation	m ²	1.647E-06	1.211E-06	26
Energy Payback time	years	1.03	0.81	21

The wind plant **construction stage** has been described in **detail** as it concerns directly the profession of VALEOL-VALOREM. The most characteristic of the test wind plant is the use of **concrete towers**.

Goal, scope and background

The main **objectives** of this study:

- Deliver a rigorous and impartial environmental assessment of the wind plant in Pauillac, France.
- Describe the most favourable stages and the most impactful stages in order to identify optimization and improvement areas for technology and product development.
- Perform sensitivity analyses regarding the influence of the wind plant lifetime and of different end of life treatments of blades on the environmental profile of the Pauillac wind plant.

DATA

- Primary data: VALOREM, suppliers
- Secondary data: literature, generic data of Ecoinvent database

LIFE CYCLE STAGES

Energy Intensity	kwn usea/kwn produced	0.051	0.040	22
CO ₂ Intensity	g of CO ₂ /kWh produced	11.77	8.87	25

Figure 3: Comparison of the effects of considering different scenarios of blade end-of-life

Conclusions

Figure 1: Life cycle stages considered for assessing the environmental impact of the wind plant

Functional unit : Deliver 1kWh of electricity to the electrical grid

Main results

- For each impact category investigated, the production stage of the different components of the wind plant, and more precisely the production of the moving parts, is the stage that shows the most impacts.
- Secondary impacts come from the construction stage, with strong impacts linked to the building of the **foundations**. This is mainly due to the mass of the corresponding components.

Sensitivity Analysis

- An increase of the life time from 20 to 40 years leads to a 20% decrease of results
- For the three end-of-life scenarios of blades:
 - No significant difference observed between the materials recovery and the landfill approach.
 - In the case of energy recovered from burning: evident positive impact on the cumulative energy demand, however impact on global warming is 4 times higher compared to the reference scenario (landfill).

Quantitative indicators

The hypothesis on the life time of the plant showed a strong influence on the results -> decrease of 21% is observed for the Energy Payback Time

Figure 2: Contribution of the main life cycle stages to impact categories where the production stage has been detailed

indicator

References

- 1) Afnor, NF EN ISO 14040: Environmental management: Life cycle assessment. Principles and framework
- 2) Afnor, NF EN ISO 14044: Environmental management: Life cycle assessment. **Requirements and Guidelines**
- 3) Crawford, R., "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size energy yield", Renewable and Sustainable Energy Reviews, vol.13, pp.2653-2660, 2009.
- Ardente, M. Beccali, M. Cellura et V. Lo Brano, "Energy performances and life cycle 4) assessment of an Italian wind farm", Renewable and Sustainable Energy Reviews, vol. 12, pp. 200-217, 2006.

EWEA 2014, Barcelona, Spain: Europe's Premier Wind Energy Event

